Дано угол a=углу b co=4 do=6 ao=5 найти а ob б sadc/sbod в padc/pbod

6 Фев 2022 в 19:41
75 +1
1
Ответы
1

Для начала найдем стороны треугольника ABC, используя косинусное правило:

ac = sqrt(ao^2 + co^2 - 2aococos(b))
ac = sqrt(5^2 + 4^2 - 254cos(b))
ac = sqrt(25 + 16 - 40cos(b))
ac = sqrt(41 - 40cos(b))

Также найдем стороны треугольника OBD, используя те же углы:

bd = sqrt(bo^2 + do^2 - 2bodocos(a))
bd = sqrt(5^2 + 6^2 - 256cos(a))
bd = sqrt(25 + 36 - 60cos(a))
bd = sqrt(61 - 60cos(a))

Теперь можем найти площади треугольников ABC и OBD:

Sadc/Sbod = (1/2 ac bd) / (1/2 co do)
Sadc/Sbod = ac bd / (co do)
Sadc/Sbod = (sqrt(41 - 40cos(b)) sqrt(61 - 60cos(a))) / (4 6)
Sadc/Sbod = (sqrt((41 - 40cos(b))*(61 - 60cos(a)))) / 24

Padc/Pbod = (1/2 ac) / (1/2 co)
Padc/Pbod = ac / co
Padc/Pbod = sqrt(41 - 40cos(b)) / 4

Таким образом, мы нашли выражения для Sadc/Sbod и Padc/Pbod в зависимости от углов a и b.

16 Апр 2024 в 19:31
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 091 автору
Первые отклики появятся уже в течение 10 минут
Прямой эфир