Для того чтобы функция у = – 2х^2 + 5х + 3 принимала значение, равное –4, необходимо решить уравнение:
-2х^2 + 5х + 3 = -4
Приведем его к стандартному виду квадратного уравнения:
-2х^2 + 5х + 3 + 4 = 0-2х^2 + 5х + 7 = 0
Далее, используем формулу для решения квадратного уравнения:
D = b^2 - 4acD = 5^2 - 4(-2)7D = 25 + 56D = 81
x = (-b ± √D) / 2ax1 = (5 + √81) / (2*(-2))x1 = (5 + 9) / -4x1 = 14 / -4x1 = -3.5
x2 = (5 - √81) / (2*(-2))x2 = (5 - 9) / -4x2 = -4 / -4x2 = 1
Таким образом, функция у = – 2х^2 + 5х + 3 примет значение, равное -4, при значениях переменной х равных -3.5 и 1.
Для того чтобы функция у = – 2х^2 + 5х + 3 принимала значение, равное –4, необходимо решить уравнение:
-2х^2 + 5х + 3 = -4
Приведем его к стандартному виду квадратного уравнения:
-2х^2 + 5х + 3 + 4 = 0
-2х^2 + 5х + 7 = 0
Далее, используем формулу для решения квадратного уравнения:
D = b^2 - 4ac
D = 5^2 - 4(-2)7
D = 25 + 56
D = 81
x = (-b ± √D) / 2a
x1 = (5 + √81) / (2*(-2))
x1 = (5 + 9) / -4
x1 = 14 / -4
x1 = -3.5
x2 = (5 - √81) / (2*(-2))
x2 = (5 - 9) / -4
x2 = -4 / -4
x2 = 1
Таким образом, функция у = – 2х^2 + 5х + 3 примет значение, равное -4, при значениях переменной х равных -3.5 и 1.