Для начала найдем высоту параллелепипеда. Обозначим её через h.
Площадь диагонального сечения равна произведению диагоналей, деленному на 2:
S_д = (7 * 24)/2 = 84 см^2
Так как площадь диагонального сечения равна 50 см^2, то можем составить уравнение:
84 = (7 24)/250 = (7 24)/224 7 h = 100
Отсюда можем найти высоту h:
h = 100/(24 * 7) = 100/168 = 25/42 = 5/8
Теперь найдем боковую площадь параллелепипеда. Обозначим её через S_б.п.
S_б.п = 2 (7 5/8 + 24 5/8 + 7 24) = 2 (35/8 + 120/8 + 168) = 2 (323/8) = 323/4 = 80.75 см^2
Таким образом, боковая площадь параллелепипеда равна 80.75 см^2.
Для начала найдем высоту параллелепипеда. Обозначим её через h.
Площадь диагонального сечения равна произведению диагоналей, деленному на 2:
S_д = (7 * 24)/2 = 84 см^2
Так как площадь диагонального сечения равна 50 см^2, то можем составить уравнение:
84 = (7 24)/2
50 = (7 24)/2
24 7 h = 100
Отсюда можем найти высоту h:
h = 100/(24 * 7) = 100/168 = 25/42 = 5/8
Теперь найдем боковую площадь параллелепипеда. Обозначим её через S_б.п.
S_б.п = 2 (7 5/8 + 24 5/8 + 7 24) = 2 (35/8 + 120/8 + 168) = 2 (323/8) = 323/4 = 80.75 см^2
Таким образом, боковая площадь параллелепипеда равна 80.75 см^2.