Используем формулу для уравнения касательной к графику функции в точке:
y - f(x0) = f'(x0)(x - x0)
Здесь f(x) = x^2 + 2x, f'(x) - производная функции.
Находим производную функции:f'(x) = 2x + 2
Подставляем x0 = -2:f'(-2) = 2*(-2) + 2 = -4 + 2 = -2
Теперь подставляем все значения в формулу:y - (-2^2 + 2(-2)) = -2(x + 2)
y + 4 = -2(x + 2)
y + 4 = -2x - 4
y = -2x - 8
Уравнение касательной к графику функции F(x) = x^2 + 2x в точке x0 = -2: y = -2x - 8.
Используем формулу для уравнения касательной к графику функции в точке:
y - f(x0) = f'(x0)(x - x0)
Здесь f(x) = x^2 + 2x, f'(x) - производная функции.
Находим производную функции:
f'(x) = 2x + 2
Подставляем x0 = -2:
f'(-2) = 2*(-2) + 2 = -4 + 2 = -2
Теперь подставляем все значения в формулу:
y - (-2^2 + 2(-2)) = -2(x + 2)
y + 4 = -2(x + 2)
y + 4 = -2x - 4
y = -2x - 8
Уравнение касательной к графику функции F(x) = x^2 + 2x в точке x0 = -2: y = -2x - 8.