Как решать задачи с тремя равенствами треугольника? Как понять когда какой? Решение и доказательства треугольников

10 Дек 2022 в 19:41
205 +1
0
Ответы
1

Теорема 1. Равенство треугольников по двум сторонам и углу между ними. 

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. 

Даны два треугольника △ABC и △A1B1C1, у которых: AC = A1C1, AB = A1B1, ∠A = ∠A1. 

Докажите, что △ABC = △A1B1C1.

Доказательство:

При наложении △A1B1C1 на △ABC вершина A1 совмещается с вершиной A, и сторона A1B1 накладывается на сторону AB, AC — на сторону A1C1.

Сторона A1B1 совмещается со стороной AB, вершина B совпадает с вершиной B1, сторона A1С1 совмещается со стороной AС, вершина C совпадает с вершиной C1.

Значит, происходит совмещение вершин В и В1, С и С1.

B1C1 = BC, следовательно, △ABC совмещается с △A1B1C, значит, △ABC = △A1B1C1.

Теорема доказана.

ВАЖНО! Первый признак используют при доказательстве второго и третьего признаков равенства треугольников.

Теорема 2. Равенство треугольников по стороне и двум прилежащим к ней углам. 

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. 

Даны два треугольника △ABC и △A1B1C1, у которых: AC = A1C1, ∠A = ∠A1, ∠C = ∠C1.

Докажите, что △ABC = △A1B1C1.

Доказательство:

Путем наложения △ABC на △A1B1C1, совмещаем вершину А с вершиной A1, вершины В и В1 лежат по одну сторону от А1С1.

Тогда АС совмещается с A1C1, вершина C совпадает с C1, поскольку мы знаем, что АС = A1C1.

AB накладывается на A1B1, поскольку мы знаем, что ∠A = ∠A1.

CB накладывается на C1B1, поскольку мы знаем, что ∠C = ∠C1.

Вершина B совпадает с вершиной B1.

Если АВ совмещается с А1В1, ВС совмещается с В1С1, то △ABC совмещается с △A1B1C1, значит, △ABC = △A1B1C1.

Теорема доказана.

Теорема 3. Равенство треугольников по трем сторонам.

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Даны два треугольника △ABC и △A1B1C1, у которых: AC = A1C1, AB = A1B1, CB = C1B1. 

Доказательство:

Приложим △ABC к △A1B1C1 таким образом, чтобы вершина A совпала с вершиной A1, вершина B — с вершиной B1, вершина C и вершина C1 лежат по разные стороны от прямой А1В1.

AC = A1C1, BC = B1C1, то △A1C1С и △B1C1С — равнобедренные.

∠1=∠2, ∠3=∠4 (по свойству равнобедренного треугольника), значит,

∠A1СB1 = ∠A1C1B1.

AC = A1C1, BC = B1C1. 

∠C = ∠C1, тогда △ABC  = △A1B1C1 (по первому признаку равенства треугольников).

Теорема доказана.

Применение данных теорем зависит от поставленной задачи. Индивидуально к каждому заданию. В основном для того, чтобы доказать равенство треугольников для решения поставленной задачи.

11 Дек 2022 в 00:29
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 493 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир