1.Найти линейную комбинацию векторов АВ+12ВС-8СД. 2.Найдите длины векторов АД, ДС,АС. 3. Найти (АВ+СД) *ад A (4; 1; 2); B (1; 0; 1); C (-1; 2; -1); D (3; 1; 0)
AB + 12BC - 8CD = AB + 12(BC) - 8(CD) AB = B - A = (1-4; 0-1; 1-2) = (-3; -1; -1) BC = C - B = (-1-1; 2-0; -1-1) = (-2; 2; -2) CD = D - C = (3-(-1); 1-2; 0-(-1)) = (4; -1; 1)
AB + 12BC - 8CD = AB + 12(BC) - 8(CD)
AB = B - A = (1-4; 0-1; 1-2) = (-3; -1; -1)
BC = C - B = (-1-1; 2-0; -1-1) = (-2; 2; -2)
CD = D - C = (3-(-1); 1-2; 0-(-1)) = (4; -1; 1)
AB + 12BC - 8CD = (-3; -1; -1) + 12(-2; 2; -2) - 8(4; -1; 1)
= (-3 + (-24) - 32; -1 + 24 - 8; -1 + 24 - 8)
= (-59; 15; 15)
Длины векторов:
AD = D - A = (3-4; 1-1; 0-2) = (-1; 0; -2)
|AD| = sqrt((-1)^2 + 0^2 + (-2)^2) = sqrt(1 + 0 + 4) = sqrt(5)
DC = C - D = (-1-3; 2-1; -1-0) = (-4; 1; -1)
|DC| = sqrt((-4)^2 + 1^2 + (-1)^2) = sqrt(16 + 1 + 1) = sqrt(18) = 3√2
AC = C - A = (-1-4; 2-1; -1-2) = (-5; 1; -3)
|AC| = sqrt((-5)^2 + 1^2 + (-3)^2) = sqrt(25 + 1 + 9) = sqrt(35)
(AB + CD) AD = (-59; 15; 15) (-1; 0; -2) = (-59(-1) + 15(0) + 15(-2))
= (59; 0; -30)