Имеет ли решение задача? Есть две последовательности чисел:
a1, a2, a3… an
b1, b2,b3… bn
Среднее арифметическое этих двух последовательностей равны.
Вычисляется разность между последовательностями следующим образом:
R = |a1-b1| + |a2-b2| + |a3-b3| +… + |an-bn|
Задача в том, возможно ли найти такой коэффициент k, домножив на который первую последовательность,
чтобы разница между последовательностями была минимальной.
т.е.
R = |k*a1-b1| + |k*a2-b2| + |k*a3-b3| +… + |k*an-bn|
т.е. нужно найти такой k, при котором R минимальна.
Другими словами, нужно подобрать такой масштабный коэффициент для первой последовательности, чтобы разница между последовательностями была минимальной.
Конечно, эта задача достаточно легко решается «двоичным поиском» (до определенной точности), но для этого нужно совершить некоторое количество вычислений R с разными k.
А можно ли как-то найти этот k не методом перебора?UPD. Все числа >= 0

21 Авг 2019 в 06:14
136 +1
0
Ответы
1

Да, данную задачу можно решить аналитически. Разберем способ нахождения оптимального коэффициента k.

Поскольку все числа в последовательностях больше или равны нулю, можно заметить, что для минимизации суммы модулей разностей можно выбрать k таким образом, чтобы a_i >= b_i для всех i. В этом случае модуль разности будет равен a_i - b_i.

Итак, чтобы минимизировать (\sum_{i=1}^{n}|k*a_i - b_i|), мы можем выбрать k таким образом, чтобы он был наименьшим коэффициентом, удовлетворяющим условию a_i >= b_i для всех i.

Таким образом, оптимальное значение k равно (k = \max\frac{b_i}{a_i}).

Это решение не требует перебора и может быть найдено аналитически.

20 Апр 2024 в 13:21
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 005 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир