Найдите разложение (x+1)^5 по биному Ньютона и треугольнику Паскаля

30 Авг 2019 в 20:41
143 +1
0
Ответы
1

Для разложения $(x+1)^5$ по биному Ньютона можно воспользоваться треугольником Паскаля:

$(x+1)^5 = \binom{5}{0}x^5 + \binom{5}{1}x^4 + \binom{5}{2}x^3 + \binom{5}{3}x^2 + \binom{5}{4}x + \binom{5}{5}$

$(x+1)^5 = x^5 + 5x^4 + 10x^3 + 10x^2 + 5x + 1$

Таким образом, разложение $(x+1)^5$ по биному Ньютона и треугольнику Паскаля будет равно $x^5 + 5x^4 + 10x^3 + 10x^2 + 5x + 1$.

20 Апр 2024 в 05:40
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 424 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир