cos(3π/2 + α) + sin(α - π/2)
cos(3π/2 + α) = cos(3π/2)cos(α) - sin(3π/2)sin(α)= 0cos(α) - (-1)sin(α)= sin(α)
sin(α - π/2) = sin(α)cos(π/2) - cos(α)sin(π/2)= sin(α)0 - cos(α)1= -cos(α)
Таким образом, выражение сокращается до:
sin(α) - cos(α)
cos(3π/2 + α) + sin(α - π/2)
cos(3π/2 + α) = cos(3π/2)cos(α) - sin(3π/2)sin(α)
= 0cos(α) - (-1)sin(α)
= sin(α)
sin(α - π/2) = sin(α)cos(π/2) - cos(α)sin(π/2)
= sin(α)0 - cos(α)1
= -cos(α)
Таким образом, выражение сокращается до:
sin(α) - cos(α)