To simplify the given expression, we can start by multiplying the terms inside the parentheses:
[tex]\begin{aligned} (\sqrt{3-\sqrt{5} })(3+\sqrt{5})(\sqrt{10}-\sqrt{2}) &= (\sqrt{3} - \sqrt{5})(3+\sqrt{5})(\sqrt{10}-\sqrt{2}) \ &= (3\sqrt{3}+\sqrt{15}-3\sqrt{5}-\sqrt{25})(\sqrt{10}-\sqrt{2}) \ &= (3\sqrt{3}+\sqrt{15}-3\sqrt{5}-5)(\sqrt{10}-\sqrt{2}) \ \end{aligned}[/tex]
Next, we can foil out the multiplication:
[tex]\begin{aligned} (3\sqrt{3}+\sqrt{15}-3\sqrt{5}-5)(\sqrt{10}-\sqrt{2}) &= 3\sqrt{3}(\sqrt{10}-\sqrt{2})+\sqrt{15}(\sqrt{10}-\sqrt{2}) \ &\quad-3\sqrt{5}(\sqrt{10}-\sqrt{2})-5(\sqrt{10}-\sqrt{2}) \ &= 3\sqrt{30}-3\sqrt{6}+\sqrt{150}-\sqrt{30}-3\sqrt{50}+\sqrt{10}+5\sqrt{10}-5\sqrt{2} \ &= 8\sqrt{30}-3\sqrt{6}+\sqrt{150}-3\sqrt{50}+6\sqrt{10}-5\sqrt{2} \ \end{aligned}[/tex]
Therefore, [tex](\sqrt{3-\sqrt{5} })(3+\sqrt{5} )(\sqrt{10} -\sqrt{2}) = \boxed{8\sqrt{30}-3\sqrt{6}+\sqrt{150}-3\sqrt{50}+6\sqrt{10}-5\sqrt{2}}[/tex].
To simplify the given expression, we can start by multiplying the terms inside the parentheses:
[tex]\begin{aligned} (\sqrt{3-\sqrt{5} })(3+\sqrt{5})(\sqrt{10}-\sqrt{2}) &= (\sqrt{3} - \sqrt{5})(3+\sqrt{5})(\sqrt{10}-\sqrt{2}) \ &= (3\sqrt{3}+\sqrt{15}-3\sqrt{5}-\sqrt{25})(\sqrt{10}-\sqrt{2}) \ &= (3\sqrt{3}+\sqrt{15}-3\sqrt{5}-5)(\sqrt{10}-\sqrt{2}) \ \end{aligned}[/tex]
Next, we can foil out the multiplication:
[tex]\begin{aligned} (3\sqrt{3}+\sqrt{15}-3\sqrt{5}-5)(\sqrt{10}-\sqrt{2}) &= 3\sqrt{3}(\sqrt{10}-\sqrt{2})+\sqrt{15}(\sqrt{10}-\sqrt{2}) \ &\quad-3\sqrt{5}(\sqrt{10}-\sqrt{2})-5(\sqrt{10}-\sqrt{2}) \ &= 3\sqrt{30}-3\sqrt{6}+\sqrt{150}-\sqrt{30}-3\sqrt{50}+\sqrt{10}+5\sqrt{10}-5\sqrt{2} \ &= 8\sqrt{30}-3\sqrt{6}+\sqrt{150}-3\sqrt{50}+6\sqrt{10}-5\sqrt{2} \ \end{aligned}[/tex]
Therefore, [tex](\sqrt{3-\sqrt{5} })(3+\sqrt{5} )(\sqrt{10} -\sqrt{2}) = \boxed{8\sqrt{30}-3\sqrt{6}+\sqrt{150}-3\sqrt{50}+6\sqrt{10}-5\sqrt{2}}[/tex].