Имеем:(8x^3 + y^3)/(4x^2 - 2xy + y^2) + (8x^3 - y^3)/(4x^2 + 2xy + y^2)
Получаем общий знаменатель:= [(8x^3 + y^3)(4x^2 + 2xy + y^2) + (8x^3 - y^3)(4x^2 - 2xy + y^2)] / [(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)]
= [32x^5 + 16x^4y + 8x^3y^2 + 8x^3y^2 + 4x^2y^3 + 2xy^4 - 32x^5 + 16x^4y - 8x^3y^2 - 8x^3y^2 + 4x^2y^3 - 2xy^4] / [(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)]
= (32x^4y + 8x^3y^2 + 4x^2y^3 + 2xy^4) / [(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)]
= 4xy(8x^3 + 2xy + y^2) / [(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)]
= 4xy(2x + y)^2 / [(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)]
Поэтому решение уравнения равно 4xy(2x + y)^2 / [(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)].
Имеем:
(8x^3 + y^3)/(4x^2 - 2xy + y^2) + (8x^3 - y^3)/(4x^2 + 2xy + y^2)
Получаем общий знаменатель:
= [(8x^3 + y^3)(4x^2 + 2xy + y^2) + (8x^3 - y^3)(4x^2 - 2xy + y^2)] / [(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)]
= [32x^5 + 16x^4y + 8x^3y^2 + 8x^3y^2 + 4x^2y^3 + 2xy^4 - 32x^5 + 16x^4y - 8x^3y^2 - 8x^3y^2 + 4x^2y^3 - 2xy^4] / [(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)]
= (32x^4y + 8x^3y^2 + 4x^2y^3 + 2xy^4) / [(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)]
= 4xy(8x^3 + 2xy + y^2) / [(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)]
= 4xy(2x + y)^2 / [(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)]
Поэтому решение уравнения равно 4xy(2x + y)^2 / [(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)].