sin^2t / (1 + cos t) + cos t = 1
To simplify this expression, we can first substitute sin^2t = 1 - cos^2t:
(1 - cos^2t) / (1 + cos t) + cos t = 1
Next, we can combine the two fractions:
(1 - cos^2t + cos t(1 + cos t)) / (1 + cos t) = 1
Now we can distribute cos t:
(1 - cos^2t + cos t + cos^2t) / (1 + cos t) = 1
Simplify further by combining like terms in the numerator:
(1 + cos t) / (1 + cos t) = 1
We are left with:
1 = 1
Therefore, the given expression is true for all values of t.
sin^2t / (1 + cos t) + cos t = 1
To simplify this expression, we can first substitute sin^2t = 1 - cos^2t:
(1 - cos^2t) / (1 + cos t) + cos t = 1
Next, we can combine the two fractions:
(1 - cos^2t + cos t(1 + cos t)) / (1 + cos t) = 1
Now we can distribute cos t:
(1 - cos^2t + cos t + cos^2t) / (1 + cos t) = 1
Simplify further by combining like terms in the numerator:
(1 + cos t) / (1 + cos t) = 1
We are left with:
1 = 1
Therefore, the given expression is true for all values of t.