To simplify the expression, first, let's express √3 as a sin or cos function:
√3 = sin(60°) = sin(π/3)
Now, we rewrite the expression using trigonometric ratios:
2 × sin(60°) : 2sin(3x)-1 : 2cos(3x) = 1
This gives us:
2sin(60°) : 2sin(3x)-1 : 2cos(3x) = 12sin(π/3) : 2sin(3x)-1 : 2cos(3x) = 12sin(π/3) : 2sin(3x)-1 : 2cos(3x) = 1
This simplifies to:
2 : 2sin(3x)-1 : 2cos(3x) = 1
Therefore, the simplified expression is:
To simplify the expression, first, let's express √3 as a sin or cos function:
√3 = sin(60°) = sin(π/3)
Now, we rewrite the expression using trigonometric ratios:
2 × sin(60°) : 2sin(3x)-1 : 2cos(3x) = 1
This gives us:
2sin(60°) : 2sin(3x)-1 : 2cos(3x) = 1
2sin(π/3) : 2sin(3x)-1 : 2cos(3x) = 1
2sin(π/3) : 2sin(3x)-1 : 2cos(3x) = 1
This simplifies to:
2 : 2sin(3x)-1 : 2cos(3x) = 1
Therefore, the simplified expression is:
2 : 2sin(3x)-1 : 2cos(3x) = 1