К плоскости равнобедренного треугольника ABC из вершины А проведен перпендикуляр AD=4 корня из 3 см. Определить площадь треугольника BDC, если АВ=АС=10 см; ВС=16 см.

13 Фев 2020 в 19:45
105 +1
1
Ответы
1

По условию треугольник ABC - равнобедренный, поэтому AB = AC = 10 см. Также из условия известно, что AD = 4√3 см.

Построим высоту AD, которая является медианой, биссектрисой и высотой.

Так как треугольник ABC равнобедренный, то AD - медиана и биссектриса.

Из свойства равнобедренного треугольника медиана, проведенная к боковой стороне, делит ее пополам. Поэтому BD = DC

Так как треугольник BDC - прямоугольный, то BD = DC = 8 см

Найдем высоту треугольника BDC по теореме Пифагора:

h^2 = AB^2 - (BD)^2
h^2 = 10^2 - 8^2
h^2 = 100 - 64
h^2 = 36
h = 6 см

Теперь можем найти площадь треугольника BDC:

S = 0.5 BD h
S = 0.5 8 6
S = 24 кв. см

Ответ: Площадь треугольника BDC равна 24 квадратных сантиметра.

18 Апр в 17:24
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 91 696 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир