Сечение шара плоскостью, которая перпендикулярна его диаметру, делит диаметр в отношении 6:17 Вычислите отношение площадей сферических поверхностей соответствующих шаровых сегментов
Варианты ответов:
1) 36:289
2) 6:17
3) корень в 3 степени из 6:корень в 3 степени из 17
4) √6:√17

4 Апр 2020 в 19:43
656 +1
0
Ответы
1

1) 36:289

Обозначим диаметр шара за 23x, тогда первый шаровый сегмент будет иметь диаметр 6x, а второй - 17x.
Площадь шарового сегмента пропорциональна квадрату диаметра, следовательно площади соответствующих шаровых сегментов будут равны (6x)^2 и (17x)^2 соответственно.
Отношение площадей сферических поверхностей шаровых сегментов:
(6x)^2 : (17x)^2 = 36x^2 : 289x^2 = 36:289

Ответ: 1) 36:289

18 Апр в 14:38
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 718 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир