1: 7sin^2x+5sinx-2=0 2: 5sin^2x-21cosx-9=0 3: 5tgx -6ctgx+7=0 4: 4cosx+sinx=0 5: sin^2x-6sinx=0 6: cos6x+cos4x=0 7: sin2x-2sin x=0 8: 3sin2x+2sin^2x=0 9: 7cos2x+18sin^2x-9=0 10: cos2x+11sin x-6=0

9 Дек 2021 в 19:42
64 +1
0
Ответы
1

1: The given equation is a quadratic equation in terms of sinx. We can solve it by using the quadratic formula:

sinx = (-5 ± sqrt(5^2 - 47(-2))/2*7
sinx = (-5 ± sqrt(25 + 56))/14
sinx = (-5 ± sqrt(81))/14
sinx = (-5 ± 9)/14

Therefore, sinx = 1 or sinx = -0.5

2: To solve this equation, we can use the Pythagorean identity to replace sin^2x:

5(1-cos^2x)-21cosx-9=0
5-5cos^2x-21cosx-9=0
5cos^2x+21cosx-14=0

Now, we can use the quadratic formula to solve for cosx.

3: This equation involves the trigonometric functions tangent and cotangent. We can rewrite the equation in terms of a single trigonometric function by making the substitution cotgx = 1/tgx:

5tgx - 6(1/tgx) + 7 = 0
5tg^2x - 6 + 7tgx = 0

Now we can solve this quadratic equation for tgx.

4: The given equation involves both cosine and sine functions. We can rewrite it using the Pythagorean identity sin^2x = 1 - cos^2x:

4(1-cos^2x) + sinx = 0
4 - 4cos^2x + sinx = 0
4 - 4(1-sin^2x) + sinx = 0

Solving this equation will give us the value of x.

5: This equation is a quadratic in terms of sinx. We can factor out sinx:

sinx(sinx-6) = 0

Therefore, sinx = 0 or sinx = 6. Since sinx cannot be greater than 1, the only solution is sinx = 0.

6: This equation involves cosine functions. We can rewrite it using the sum-to-product formula for cosine:

cos6x + cos4x = 2cos(5x)cos(x) = 0

From this, we can deduce that either cos(5x) = 0 or cos(x) = 0.

7: We can rewrite the equation using the double angle formula for sine:

2sinxcosx - 2sinx = 0
2sinx(cosx - 1) = 0

Therefore, sinx = 0 or cosx = 1.

8: This equation is a quadratic in terms of sinx. We can factor out sinx:

sinx(3sinx+2) = 0

Therefore, sinx = 0 or sinx = -2/3.

9: To solve this equation, we will use the Pythagorean identity to replace cos2x:

7(1 - 2sin^2x) + 18sin^2x - 9 = 0
7 - 14sin^2x + 18sin^2x - 9 = 0
4sin^2x - 2 = 0

Solving this quadratic equation gives us the value of sinx.

10: We can rewrite the equation using the double angle formula for cosine and the Pythagorean identity:

2cos^2x + 11sinx - 6 = 0
2(1-sin^2x) + 11sinx - 6 = 0

Solving this equation will give us the value of x.

16 Апр 2024 в 20:41
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 005 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир