Пусть сторона квадрата равна x метров.
Тогда длина прямоугольного участка будет (x + 10) метров, а ширина - (x - 6) метров.
По условию задачи, площади квадратнего участка и прямоугольного участка равны:
x^2 = (x + 10)(x - 6)
Раскрываем скобки:
x^2 = x^2 + 10x - 6x - 60
x^2 = x^2 + 4x - 60
Отнимаем x^2 от обеих частей:
4x - 60 = 0
4x = 60
x = 60 / 4
x = 15
Ответ: сторона квадратного участка равна 15 метрам.
Пусть сторона квадрата равна x метров.
Тогда длина прямоугольного участка будет (x + 10) метров, а ширина - (x - 6) метров.
По условию задачи, площади квадратнего участка и прямоугольного участка равны:
x^2 = (x + 10)(x - 6)
Раскрываем скобки:
x^2 = x^2 + 10x - 6x - 60
x^2 = x^2 + 4x - 60
Отнимаем x^2 от обеих частей:
4x - 60 = 0
4x = 60
x = 60 / 4
x = 15
Ответ: сторона квадратного участка равна 15 метрам.