To solve the given equation, we need to find a common denominator for all the fractions on the left side.
The common denominator for (\frac{1}{(x-1)(x-2)}) and (\frac{3}{x-1}) is ((x-1)(x-2)).
Therefore, multiplying each fraction by the appropriate factor to get the common denominator, we get:
[\frac{1}{(x - 1)(x - 2)} \cdot \frac{x - 2}{x - 2} + \frac{3}{x - 1} \cdot \frac{(x - 2)}{(x-2)} = \frac{3 - x}{x - 2}]
[ \frac{x - 2}{(x - 1)(x - 2)} + \frac{3x - 6}{(x - 1)(x-2)} = \frac{3 - x}{x - 2}]
Now combine the fractions on the left side:
[\frac{x - 2 + 3x - 6}{(x - 1)(x - 2)} = \frac{3 - x}{x - 2}]
[\frac{4x - 8}{(x - 1)(x - 2)} = \frac{3 - x}{x - 2}]
Now cross multiply:
[(4x - 8)(x - 2) = (3 - x)(x - 1)]
Expand both sides:
[4x^2 - 8x - 8x + 16 = 3x - x^2 - 3 + x]
[4x^2 - 16x + 16 = 3x - x^2 - 3 + x]
Rearrange the equation:
[5x^2 - 19x + 19 = 0]
This is a quadratic equation. To solve for x, we can use the quadratic formula:
[x = \frac{-(-19) \pm \sqrt{(-19)^2 - 4(5)(19)}}{2(5)}]
[x = \frac{19 \pm \sqrt{361 - 380}}{10}]
[x = \frac{19 \pm \sqrt{-19}}{10}]
[x = \frac{19 \pm i\sqrt{19}}{10}]
Therefore, the solutions to the given equation are:
[x = \frac{19 + i\sqrt{19}}{10}, \frac{19 - i\sqrt{19}}{10}]
To solve the given equation, we need to find a common denominator for all the fractions on the left side.
The common denominator for (\frac{1}{(x-1)(x-2)}) and (\frac{3}{x-1}) is ((x-1)(x-2)).
Therefore, multiplying each fraction by the appropriate factor to get the common denominator, we get:
[\frac{1}{(x - 1)(x - 2)} \cdot \frac{x - 2}{x - 2} + \frac{3}{x - 1} \cdot \frac{(x - 2)}{(x-2)} = \frac{3 - x}{x - 2}]
[ \frac{x - 2}{(x - 1)(x - 2)} + \frac{3x - 6}{(x - 1)(x-2)} = \frac{3 - x}{x - 2}]
Now combine the fractions on the left side:
[\frac{x - 2 + 3x - 6}{(x - 1)(x - 2)} = \frac{3 - x}{x - 2}]
[\frac{4x - 8}{(x - 1)(x - 2)} = \frac{3 - x}{x - 2}]
Now cross multiply:
[(4x - 8)(x - 2) = (3 - x)(x - 1)]
Expand both sides:
[4x^2 - 8x - 8x + 16 = 3x - x^2 - 3 + x]
[4x^2 - 16x + 16 = 3x - x^2 - 3 + x]
Rearrange the equation:
[5x^2 - 19x + 19 = 0]
This is a quadratic equation. To solve for x, we can use the quadratic formula:
[x = \frac{-(-19) \pm \sqrt{(-19)^2 - 4(5)(19)}}{2(5)}]
[x = \frac{19 \pm \sqrt{361 - 380}}{10}]
[x = \frac{19 \pm \sqrt{-19}}{10}]
[x = \frac{19 \pm i\sqrt{19}}{10}]
Therefore, the solutions to the given equation are:
[x = \frac{19 + i\sqrt{19}}{10}, \frac{19 - i\sqrt{19}}{10}]