Для начала упростим уравнение:
2/x - 5 = 3x/(x+3)
Умножаем обе стороны уравнения на x(x+3), чтобы избавиться от знаменателей:
2(x+3) - 5x(x+3) = 3x
Раскрываем скобки:
2x + 6 - 5x^2 - 15x = 3x
Распишем всё в общем виде и приведем подобные члены:
-5x^2 - 18x + 6 = 3x
Перенесем все члены в одну сторону уравнения:
-5x^2 - 18x + 6 - 3x = 0
-5x^2 - 21x + 6 = 0
Теперь решаем квадратное уравнение (-5x^2 - 21x + 6 = 0) с помощью дискриминанта:
D = 21^2 - 4(-5)6 = 441 + 120 = 561
x = (-(-21) ± √561) / (2*(-5))
x1 = (21 + √561) / (-10) ≈ -0.181
x2 = (21 - √561) / (-10) ≈ 1.281
Ответ: x1 ≈ -0.181, x2 ≈ 1.281.
Для начала упростим уравнение:
2/x - 5 = 3x/(x+3)
Умножаем обе стороны уравнения на x(x+3), чтобы избавиться от знаменателей:
2(x+3) - 5x(x+3) = 3x
Раскрываем скобки:
2x + 6 - 5x^2 - 15x = 3x
Распишем всё в общем виде и приведем подобные члены:
-5x^2 - 18x + 6 = 3x
Перенесем все члены в одну сторону уравнения:
-5x^2 - 18x + 6 - 3x = 0
-5x^2 - 21x + 6 = 0
Теперь решаем квадратное уравнение (-5x^2 - 21x + 6 = 0) с помощью дискриминанта:
D = 21^2 - 4(-5)6 = 441 + 120 = 561
x = (-(-21) ± √561) / (2*(-5))
x1 = (21 + √561) / (-10) ≈ -0.181
x2 = (21 - √561) / (-10) ≈ 1.281
Ответ: x1 ≈ -0.181, x2 ≈ 1.281.