This equation can be simplified by using the trigonometric identity:
cos^2(x) + sin^2(x) = 1
Therefore:
sin^2(x) + cos^22x + cos^23x + cos^24x = sin^2(x) + (1 - sin^2(2x)) + (1 - cos^2(3x)) + (1 - sin^2(4x))= sin^2(x) + 1 - sin^2(2x) + 1 - cos^2(3x) + 1 - sin^2(4x)= 3 - sin^2(2x) - cos^2(3x) - sin^2(4x)
Since sin^2(x) + cos^2(x) = 1, we have:
sin^2(2x) = 1 - cos^2(2x)cos^2(3x) = 1 - sin^2(3x)sin^2(4x) = 1 - cos^2(4x)
Substitute these into the equation:
3 - (1 - cos^2(2x)) - (1 - sin^2(3x)) - (1 - cos^2(4x))= 3 - 1 + cos^2(2x) - 1 + sin^2(3x) - 1 + cos^2(4x)= 3 - 1 + cos^2(2x) - 1 + 1 - cos^2(4x) = 2
Therefore, the simplified equation is equal to 2.
This equation can be simplified by using the trigonometric identity:
cos^2(x) + sin^2(x) = 1
Therefore:
sin^2(x) + cos^22x + cos^23x + cos^24x = sin^2(x) + (1 - sin^2(2x)) + (1 - cos^2(3x)) + (1 - sin^2(4x))
= sin^2(x) + 1 - sin^2(2x) + 1 - cos^2(3x) + 1 - sin^2(4x)
= 3 - sin^2(2x) - cos^2(3x) - sin^2(4x)
Since sin^2(x) + cos^2(x) = 1, we have:
sin^2(2x) = 1 - cos^2(2x)
cos^2(3x) = 1 - sin^2(3x)
sin^2(4x) = 1 - cos^2(4x)
Substitute these into the equation:
3 - (1 - cos^2(2x)) - (1 - sin^2(3x)) - (1 - cos^2(4x))
= 3 - 1 + cos^2(2x) - 1 + sin^2(3x) - 1 + cos^2(4x)
= 3 - 1 + cos^2(2x) - 1 + 1 - cos^2(4x) = 2
Therefore, the simplified equation is equal to 2.